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1. Introduction 

Microorganisms possess the capability to survive without being eliminated or having their growth inhibited by 

antimicrobial agents, a phenomenon referred to as antimicrobial resistance (AMR). AMR occurs when bacteria undergo 

changes, making previously effective medications for infections caused by those bacteria ineffective. The excessive use 

of antibiotics fosters the proliferation of superbugs, which encompass bacterial strains that exhibit extensive drug 

resistance (XDR) and multidrug resistance (MDR). The emergence of these superbugs has led to repeated rises in 

mortality and illness, presenting a significant challenge to global public health [1]. This growing crisis threatens to 

undermine decades of medical progress, as common infections become increasingly difficult to treat and routine surgical 

procedures carry heightened risks of post-operative complications. The global spread of resistant pathogens has been 

accelerated by factors including international travel, inadequate infection control measures in healthcare settings, and 

the widespread use of antibiotics in agriculture and animal husbandry. 
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Abstract 
Multi drug resistance (MDR) refers to a situation in which various organisms, including viruses, fungi, parasites, and 

particularly bacteria, exhibit immunity to the specific drugs intended to eliminate them. The inappropriate and excessive use 

of drugs in animals, humans, agriculture, and the environment has hastened the emergence and proliferation of multidrug 

resistance. MDR pathogens develop when antibiotic treatment is interrupted or when antibiotics are discontinued before 

completing the full clinical course or trial for the disease in question. During this time, bacteria, viruses, and other parasites 

are altering their responses to drugs intended to eliminate them, undergoing structural modifications to develop resistance 

against these medications or antibiotics. MDR represents a significant global health issue that requires immediate attention 

through practical solutions. In 2019, it is estimated that there were 4.95 million fatalities globally due to bacterial multidrug 

resistance, with 1.27 million deaths directly linked to this issue. The emergence of drug-resistant microorganisms poses a 

significant challenge for modern medicine. Consequently, algorithms for machine learning and artificial intelligence have 

emerged as powerful tools in the battle against drug resistance. This review aims to explore the role of advanced computational 

techniques in managing multidrug-resistant pathogens, focusing on identifying pathogens, understanding resistance patterns, 

predicting treatment outcomes, and developing new antibiotic therapies. In conclusion, the potential of AI/ML to improve MDR 
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In 2019, there were approximately 5 million deaths worldwide attributed to antimicrobial resistance, with bacterial 

antimicrobial resistance responsible for 1.27 million of those fatalities [2]. Western Sub-Saharan Africa experienced 

the highest all-age mortality rate attributed to resistance, recording 27.3 deaths per 100,000 individuals [2]. These 

alarming statistics underscore the disproportionate burden borne by low- and middle-income countries, where limited 

access to diagnostic tools, quality-assured medicines, and infection prevention resources exacerbate the problem. The 

economic implications are equally concerning, with AMR imposing substantial healthcare costs through prolonged 

hospital stays, more expensive treatments, and decreased workforce productivity. Furthermore, the geographic variation 

in resistance patterns reflects disparities in healthcare infrastructure, antibiotic stewardship programs, and public health 

surveillance systems, highlighting the need for globally coordinated efforts to address this multifaceted challenge. 

Accurate and timely bacterial identification, along with antibiotic susceptibility testing, is crucial for enhancing patient 

outcomes in the management of infectious illnesses. Traditional diagnostic methods, while reliable, often require 

extended incubation periods ranging from 24 to 72 hours, during which empirical broad-spectrum antibiotic therapy 

may be administered, potentially contributing to further resistance development. The delay in obtaining definitive 

diagnostic results can lead to inappropriate antibiotic selection, inadequate dosing, or unnecessarily prolonged treatment 

durations. Moreover, conventional culture-based methods may fail to detect fastidious organisms or those present in 

polymicrobial infections, limiting their clinical utility. The advancements in AI have significantly enhanced diagnostic 

accuracy through the analysis of extensive datasets, enabling the identification of trends and the formulation of 

predictions [3]. AI algorithms, particularly those incorporating machine learning capabilities, provide quicker and more 

precise diagnoses compared to conventional methods [3,4]. These technologies can process complex microbiological 

data, including genomic sequences, mass spectrometry profiles, and digital microscopy images, to rapidly identify 

pathogens and predict their antibiotic susceptibility patterns with unprecedented accuracy. 

The integration of AI and ML in healthcare encompasses real-time monitoring, decision support systems, and 

medication development [5–7], facilitating proactive interventions and focused antimicrobial stewardship. Machine 

learning models can analyze electronic health records to identify patients at high risk of developing resistant infections, 

enabling targeted preventive measures and optimized treatment protocols. Clinical decision support systems powered 

by AI can provide evidence-based recommendations for antibiotic selection, dosing adjustments based on patient-

specific factors, and alerts for potential drug interactions or adverse effects. These intelligent systems continuously learn 

from new data, refining their predictions and recommendations to reflect emerging resistance patterns and clinical 

outcomes. Furthermore, AI-driven surveillance platforms can detect outbreaks of resistant organisms in real-time, 

enabling rapid public health responses and infection control interventions to prevent further transmission. 

The application of AI and machine learning is transforming the field of drug discovery, particularly in the area of 

antimicrobial peptides, which exhibit significant antibacterial properties [8,9]. Traditional drug development processes 

are time-consuming and costly, often taking over a decade and billions of dollars to bring a new antimicrobial agent to 

market. AI algorithms can dramatically accelerate this process by screening vast chemical libraries, predicting molecular 

interactions, and identifying promising candidate compounds with optimal pharmacological properties. The use of 

computational modeling and predictive analytics can enhance the efficiency of AMP identification and optimization, 

leading to the development of novel treatments for drug-resistant infections [10]. Deep learning approaches can predict 

the three-dimensional structures of antimicrobial peptides, assess their potential toxicity, and optimize their stability 

and bioavailability. These computational tools enable researchers to explore chemical space more comprehensively and 

design molecules with tailored properties to overcome specific resistance mechanisms. 

Advancements in AI and machine learning, combined with clinical experience, hold the promise of mitigating the effects 

of antimicrobial resistance and enhancing patient outcomes [6,7]. The synergy between artificial intelligence 

capabilities and human expertise creates a powerful framework for addressing the AMR crisis through improved 

diagnostics, optimized treatment strategies, and accelerated development of novel antimicrobial agents, ultimately 

contributing to better healthcare delivery and global health security. 

ML approaches for combating MDR 
Machine learning offers various strategies and applications to address antimicrobial resistance (Fig. 1) (Table 1). 
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Through structure-based design, it is possible to pinpoint new therapeutic targets, evaluate compound libraries, and 

enhance lead candidates for antibacterial properties. Machine learning algorithms applied to antimicrobial datasets 

forecast bioactivity, pharmacokinetic properties, and safety profiles of novel drug candidates, accelerating the drug 

development process and lowering costs in comparison to conventional approaches [11-13].  

 

Supervised learning, a widely utilized method in machine learning, involves training models on labeled datasets such 

as microbial genomes or patient records to forecast antibiotic susceptibility or treatment responses (Fig. 1). In order to 

forecast the sensitivity of Streptococcus pneumoniae to β-lactam antibiotics, a correlation was established between 

penicillin-binding protein (PBP) sequences and minimum inhibitory concentration (MIC) values utilizing labeled data. 

Sequences in the NCBI database lacking MIC values were utilized as unlabeled data. This method revealed the 

connection among the resistance phenotypes, serotypes, and sequence types of S. pneumoniae [14]. Utilizing supervised 

machine learning, genetic traits associated with antibiotic susceptibility in Escherichia coli were identified across 

various sequence types (ST). Genetic markers provide valuable insights into the dissemination of STs within clonal 

complexes characterized by elevated transmission rates [15]. López-Kleine et al. identified 12 potential virulence factors 

in Streptococcus pyogenes using an objective approach, free from subjective filters or specific biological processes. 

These genes present significant potential for subsequent biological validation and the advancement of medication 

development [16]. Unsupervised learning examines unlabeled data to uncover concealed patterns or clusters within 

microbial populations. This contributes to the comprehension of resistance mechanisms and the identification of novel 

resistance genes [17, 18] (Fig. 1). Clustering algorithms, including K-means Clustering, classify bacteria according to 

their resistance profiles or genetic characteristics [19]. A recent study categorized β-lactamases into resistant and wild 

type, highlighting distinct clusters with specific strain characteristics [20]. K-means clustering is capable of identifying 

emerging resistance clusters or outbreaks, facilitating timely interventions to curb the spread of antimicrobial-resistant 

diseases. A study revealed that Salmonella enterica can demonstrate resistance to both metals and antibiotics [21].  

 
 

Fig. 1: ML methods and applications in the fight against antimicrobial resistance. 

 

Deep learning algorithms, such as CNNs and RNNs [22], extract complex information from genomic sequences to 

identify resistant strains and predict resistance mechanisms (Fig. 1). CNNs accurately classify bacterial strains as 

resistant or susceptible based on genomic sequences, whereas RNNs predict antimicrobial susceptibility based on 
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treatment history or microbial evolution over time. CNN models can discover functional genetic differences, provide 

physiological explanations, and have clinical uses [22]. A CNN was used to predict Mycobacterium TB resistance to 

13 medications by evaluating 18 previously unassociated genomic regions [23]. Deep learning techniques such as 

generative adversarial networks (GANs) have shown encouraging outcomes in the analysis of antimicrobial peptides 

[24]. GANs can synthesize anti-bacterial peptides by modifying the probability distribution of generated sequences. 

Tucs et al. [25] created six peptide variants, one of which demonstrated substantial antibacterial action against 

Escherichia coli. 

 

Reinforcement learning (RL) optimizes antibiotic treatment regimens and drug combinations against resistance through 

trial-and-error feedback [26] (Fig. 1). RL techniques can maximize tasks with minimal understanding of system 

dynamics, such as evolutionary simulations of bacterial populations. Using E. coli as a model, a study found that each 

genotype in a population corresponded to a certain fitness landscape in simulations of evolution. The scientists found 

that increased genome size did not limit the decline in population fitness caused by medication cycles [27]. The RL 

method has been shown to provide reasonable antibiotic treatment recommendations for sepsis that align with clinical 

experience [28]. 

 

ML approaches provide distinct advantages in combating AMR, including detecting genetic markers, forecasting 

resistance trends, and optimizing treatment options in real-time. Methods for creating new antimicrobial drugs are 

tailored to the specific problem and factors, leading to increased efficiency and precision [29, 30]. 

 

AI-powered AMP discovery 

 

AMPs are small peptides that exhibit a wide range of structural diversity and possess antimicrobial properties. Amino 

acid residues in their sequence can range from a few to dozens, with or without modifications, and they operate through 

various mechanisms [31]. AMPs have the ability to destabilize membranes that are negatively charged and zwitterionic, 

leading to the permeabilization of the membrane. This memorandum of agreement highlights antimicrobial peptides as 

an innovative category of prospective antibacterial agents, complicating the emergence of resistance development [31, 

32]. 

 

 AMP extraction from existing sequence space 
 

The advancement of novel antimicrobial peptides (AMPs) has been greatly supported by AI. Platforms such as Deep-

AmPEP30, IAMPE, and DeepACP have significantly advanced the processes of peptide discovery and synthesis. 

Databases of antimicrobial peptides derived from genetic sequences, like the AMPer database, are curated for the 

purpose of designing innovative antimicrobial peptides. Advanced strategies for AMP design involve modifying 

existing AMPs, creating protein epitope molecules (PEMs), and utilizing biophysically motivated modeling studies. 

Natural Language Processing (NLP) has been utilized to comprehend AMP activity and to create AMPs. A study 

integrating machine learning with extensive meta datasets, including omics data, demonstrated the potential of this 

combination to enhance AMP prediction and pinpoint active therapeutic molecules. This study illustrates the significant 

potential of employing computational techniques to identify active therapeutic molecules from various omics data 

sources [33]. 

 

AMP harvesting from both extinct and simulated sequences 

Microbes aren't the sole contributors to AMP mining. Maasch et al. [34] developed panCleave, a random forest model 

designed to predict proteome-wide cleavage sites for the identification of AMPs in both extinct and extant human 
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proteomes, utilizing the concept of “molecular de-extinction.” The AMPs identified through panCleave exhibited the 

ability to permeabilize membranes and showed effectiveness against A. baumannii in murine skin abscess and thigh 

infection models, highlighting the potential of the paleoproteome as a source for therapeutic candidates [34]. The 

process of AMP mining from current proteomes, irrespective of their origin, is fundamentally biased towards the 

sequence space of the proteome. Huang et al. [35] developed a sequential model ensemble pipeline that incorporates 

machine learning modules, employing a coarse-to-fine design strategy to explore the complete virtual library of peptides 

with lengths varying from six to nine amino acids. The tree lead hexapeptides from this pipeline exhibit considerable 

efficacy against multidrug-resistant clinical isolates in both in vitro and in vivo models, highlighting the substantial 

potential of the sequential model ensemble pipeline for objective peptide screening tasks [35]. 

 

Fig 2: The application of artificial intelligence in the synthesis of antimicrobial peptides. The databases of AMPs have 

established a strong basis for training models using AI, including natural language processing and deep generative 

networks. AI models can be employed to explore a vast array of protein sequence space, encompassing the extinct 

human proteome, while high-throughput methods such as cell-free synthesis greatly enhance the speed of validating 

potential antimicrobial peptides. 

 

De novo design of AMP 
 

Antimicrobial peptides (AMPs) have been developed using deep generative neural networks [36]. International Business 

Machines Corporation employed two types of variational inference autoencoders, specifically the conventional 

Variational Autoencoder (VAE) and the Wasserstein Autoencoder, to create two novel and highly effective AMPs. This 

study addresses the peptide generation problem by conceptualizing it as a challenge in density modeling. The model 

efficiently samples the peptide sequence space, highlighting regions with high probability density. The density 

estimation technique has been improved to assign high likelihoods to identified trends while penalizing random, 

insignificant sequences [37]. The team employed 1.7 million peptide sequences sourced from the UniProt database for 

algorithm training. The frequency of interactions between positive residues and lipid bilayers is a predictor of 

antimicrobial activity [130]. After comprehensive in silico screening, 20 peptide sequences were selected. The samples 

were tested in wet laboratories to assess their antibacterial activity against different bacterial strains, including Gram-

positive S. aureus and Gram-negative E. coli. Within 48 days, two novel antimicrobial peptides demonstrating broad 

antibacterial activity were identified [37]. Szymczak et al. [38] presented HydrAMP, a conditional VAE that 

demonstrates proficiency in analog and unconstrained AMP synthesis, functioning as a deep generative model for AMP 

design. The antimicrobial peptides exhibited effectiveness against five bacterial strains, including both Gram-positive 

and Gram-negative types, as well as strains resistant to antibiotics. HydrAMP signifies a significant development in the 

synthesis of high-potency antimicrobial peptides designed to combat antibiotic resistance [38].  
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Deep generative neural networks applied to de novo AMP design produce a significant number of candidate peptides 

for in vitro validation. DNA-based bioproduction significantly improves the efficiency of peptide screening compared 

to conventional chemical synthesis techniques. However, methods that depend on cells encounter limitations due to the 

toxic effects of peptides on bacteria [39]. Pandi et al. [39] utilized a cell-free protein synthesis pipeline to evaluate 500 

de novo generated antimicrobial peptides using deep learning methodologies. Six of these AMPs demonstrated broad-

spectrum activity against multidrug-resistant bacterial isolates, underscoring the potential of DL-based design. 

 

The role of AI in the advancement of phage therapy 
 

Alternative techniques, such as phage therapy, have played a crucial role in addressing antibiotic resistance, in 

conjunction with small-molecule medicines and AMPs [40, 41]. Bacteriophages, the natural predators of bacteria, have 

co-evolved with their hosts for 3.8 billion years and are essential to the human microbiome [42]. Phage treatment offers 

a higher level of specificity compared to broad-spectrum antibiotics, thereby minimizing disturbances to the microbiota 

and helping to prevent the spread of antibiotic-induced antimicrobial resistance. A number of investigations have 

demonstrated clinical success [45-48]. This section delineates phage therapy into four distinct steps: identifying phages, 

predicting phage virion proteins (PVPs), analyzing phage lifestyle, and exploring phage-host interactions. The 

discussion encompasses the application of artificial intelligence throughout each phase. 

 

Conclusion 
 
The One Health concept recognizes the interrelationship between human, animal, and environmental health, especially 

regarding antimicrobial resistance (AMR). The application of antibiotics in humans, animals, and agricultural practices 

can lead to the development and dissemination of resistant diseases. The use of antimicrobials in cattle for preventive 

measures and growth promotion has sparked significant concerns regarding the potential for antibiotic resistance in 

humans. This phenomenon can be attributed to the widespread occurrence of zoonotic diseases among animal 

populations. Integrating AI and machine learning into One Health initiatives can facilitate data-driven collaboration 

across various sectors, enabling efficient prediction, monitoring, and control of antimicrobial resistance threats.  

The introduction of the exposome by Christopher Wild in 2005 is essential for comprehending the transmission of 

AMR. This category encompasses all environmental exposures, such as the use of antibiotics in healthcare, agriculture, 

and the broader environment. The analysis of exposome-related data through AI/ML techniques uncovers patterns that 

connect environmental variables to antimicrobial resistance. These models leverage clinical records, environmental 

monitoring, and genetic sequencing data to identify risk factors and forecast future trends in antimicrobial resistance. 

The One Health paradigm enhances risk assessment and environmental management through the integration of big data 

analysis, machine learning algorithms, and geographic information systems.  

The integration of diverse data types, including genomic, phenotypic, clinical, and epidemiologic information, can 

enhance predictive models for AMR through the application of AI and ML techniques. These tools facilitate early 

detection of increasing resistance, allowing for timely intervention. The automation of the search for resistance 

mechanisms and medicines through AI/ML streamlines the process, reducing the need for manual testing and decreasing 

the likelihood of human error. Advanced algorithms and simulations enhance our capacity to combat AMR by 

pinpointing novel pharmacological and therapeutic targets. Furthermore, the application of AI and machine learning 

facilitates tailored antibiotic therapies by utilizing data from both patients and pathogens. The integration of various 

fields, including computer science, biology, and medicine, is enhanced by these technologies, leading to innovative and 

thorough approaches to addressing antibiotic resistance issues.  
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