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Abstract

Multi drug resistance (MDR) refers to a situation in which various organisms, including viruses, fungi, parasites, and
particularly bacteria, exhibit immunity to the specific drugs intended to eliminate them. The inappropriate and excessive use
of drugs in animals, humans, agriculture, and the environment has hastened the emergence and proliferation of multidrug
resistance. MDR pathogens develop when antibiotic treatment is interrupted or when antibiotics are discontinued before
completing the full clinical course or trial for the disease in question. During this time, bacteria, viruses, and other parasites
are altering their responses to drugs intended to eliminate them, undergoing structural modifications to develop resistance
against these medications or antibiotics. MDR represents a significant global health issue that requires immediate attention
through practical solutions. In 2019, it is estimated that there were 4.95 million fatalities globally due to bacterial multidrug
resistance, with 1.27 million deaths directly linked to this issue. The emergence of drug-resistant microorganisms poses a
significant challenge for modern medicine. Consequently, algorithms for machine learning and artificial intelligence have
emerged as powerful tools in the battle against drug resistance. This review aims to explore the role of advanced computational
techniques in managing multidrug-resistant pathogens, focusing on identifying pathogens, understanding resistance patterns,

Keywords: Multi-drug resistance (MDR), pathogens, pathogen identification, antibiotics, machine learning (ML), artificial
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1. Introduction

Microorganisms possess the capability to survive without being eliminated or having their growth inhibited by
antimicrobial agents, a phenomenon referred to as antimicrobial resistance (AMR). AMR occurs when bacteria undergo
changes, making previously effective medications for infections caused by those bacteria ineffective. The excessive use
of antibiotics fosters the proliferation of superbugs, which encompass bacterial strains that exhibit extensive drug
resistance (XDR) and multidrug resistance (MDR). The emergence of these superbugs has led to repeated rises in
mortality and illness, presenting a significant challenge to global public health [1]. This growing crisis threatens to
undermine decades of medical progress, as common infections become increasingly difficult to treat and routine surgical
procedures carry heightened risks of post-operative complications. The global spread of resistant pathogens has been
accelerated by factors including international travel, inadequate infection control measures in healthcare settings, and
the widespread use of antibiotics in agriculture and animal husbandry.
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In 2019, there were approximately 5 million deaths worldwide attributed to antimicrobial resistance, with bacterial
antimicrobial resistance responsible for 1.27 million of those fatalities [2]. Western Sub-Saharan Africa experienced
the highest all-age mortality rate attributed to resistance, recording 27.3 deaths per 100,000 individuals [2]. These
alarming statistics underscore the disproportionate burden borne by low- and middle-income countries, where limited
access to diagnostic tools, quality-assured medicines, and infection prevention resources exacerbate the problem. The
economic implications are equally concerning, with AMR imposing substantial healthcare costs through prolonged
hospital stays, more expensive treatments, and decreased workforce productivity. Furthermore, the geographic variation
in resistance patterns reflects disparities in healthcare infrastructure, antibiotic stewardship programs, and public health
surveillance systems, highlighting the need for globally coordinated efforts to address this multifaceted challenge.

Accurate and timely bacterial identification, along with antibiotic susceptibility testing, is crucial for enhancing patient
outcomes in the management of infectious illnesses. Traditional diagnostic methods, while reliable, often require
extended incubation periods ranging from 24 to 72 hours, during which empirical broad-spectrum antibiotic therapy
may be administered, potentially contributing to further resistance development. The delay in obtaining definitive
diagnostic results can lead to inappropriate antibiotic selection, inadequate dosing, or unnecessarily prolonged treatment
durations. Moreover, conventional culture-based methods may fail to detect fastidious organisms or those present in
polymicrobial infections, limiting their clinical utility. The advancements in Al have significantly enhanced diagnostic
accuracy through the analysis of extensive datasets, enabling the identification of trends and the formulation of
predictions [3]. Al algorithms, particularly those incorporating machine learning capabilities, provide quicker and more
precise diagnoses compared to conventional methods [3,4]. These technologies can process complex microbiological
data, including genomic sequences, mass spectrometry profiles, and digital microscopy images, to rapidly identify
pathogens and predict their antibiotic susceptibility patterns with unprecedented accuracy.

The integration of Al and ML in healthcare encompasses real-time monitoring, decision support systems, and
medication development [5-7], facilitating proactive interventions and focused antimicrobial stewardship. Machine
learning models can analyze electronic health records to identify patients at high risk of developing resistant infections,
enabling targeted preventive measures and optimized treatment protocols. Clinical decision support systems powered
by Al can provide evidence-based recommendations for antibiotic selection, dosing adjustments based on patient-
specific factors, and alerts for potential drug interactions or adverse effects. These intelligent systems continuously learn
from new data, refining their predictions and recommendations to reflect emerging resistance patterns and clinical
outcomes. Furthermore, Al-driven surveillance platforms can detect outbreaks of resistant organisms in real-time,
enabling rapid public health responses and infection control interventions to prevent further transmission.

The application of Al and machine learning is transforming the field of drug discovery, particularly in the area of
antimicrobial peptides, which exhibit significant antibacterial properties [8,9]. Traditional drug development processes
are time-consuming and costly, often taking over a decade and billions of dollars to bring a new antimicrobial agent to
market. Al algorithms can dramatically accelerate this process by screening vast chemical libraries, predicting molecular
interactions, and identifying promising candidate compounds with optimal pharmacological properties. The use of
computational modeling and predictive analytics can enhance the efficiency of AMP identification and optimization,
leading to the development of novel treatments for drug-resistant infections [10]. Deep learning approaches can predict
the three-dimensional structures of antimicrobial peptides, assess their potential toxicity, and optimize their stability
and bioavailability. These computational tools enable researchers to explore chemical space more comprehensively and
design molecules with tailored properties to overcome specific resistance mechanisms.

Advancements in Al and machine learning, combined with clinical experience, hold the promise of mitigating the effects
of antimicrobial resistance and enhancing patient outcomes [6,7]. The synergy between artificial intelligence
capabilities and human expertise creates a powerful framework for addressing the AMR crisis through improved
diagnostics, optimized treatment strategies, and accelerated development of novel antimicrobial agents, ultimately
contributing to better healthcare delivery and global health security.

ML approaches for combating MDR

Machine learning offers various strategies and applications to address antimicrobial resistance (Fig. 1) (Table 1).
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Through structure-based design, it is possible to pinpoint new therapeutic targets, evaluate compound libraries, and
enhance lead candidates for antibacterial properties. Machine learning algorithms applied to antimicrobial datasets
forecast bioactivity, pharmacokinetic properties, and safety profiles of novel drug candidates, accelerating the drug
development process and lowering costs in comparison to conventional approaches [11-13].

Supervised learning, a widely utilized method in machine learning, involves training models on labeled datasets such
as microbial genomes or patient records to forecast antibiotic susceptibility or treatment responses (Fig. 1). In order to
forecast the sensitivity of Streptococcus pneumoniae to B-lactam antibiotics, a correlation was established between
penicillin-binding protein (PBP) sequences and minimum inhibitory concentration (MIC) values utilizing labeled data.
Sequences in the NCBI database lacking MIC values were utilized as unlabeled data. This method revealed the
connection among the resistance phenotypes, serotypes, and sequence types of S. pneumoniae [14]. Utilizing supervised
machine learning, genetic traits associated with antibiotic susceptibility in Escherichia coli were identified across
various sequence types (ST). Genetic markers provide valuable insights into the dissemination of STs within clonal
complexes characterized by elevated transmission rates [15]. Lopez-Kleine et al. identified 12 potential virulence factors
in Streptococcus pyogenes using an objective approach, free from subjective filters or specific biological processes.
These genes present significant potential for subsequent biological validation and the advancement of medication
development [16]. Unsupervised learning examines unlabeled data to uncover concealed patterns or clusters within
microbial populations. This contributes to the comprehension of resistance mechanisms and the identification of novel
resistance genes [17, 18] (Fig. 1). Clustering algorithms, including K-means Clustering, classify bacteria according to
their resistance profiles or genetic characteristics [19]. A recent study categorized -lactamases into resistant and wild
type, highlighting distinct clusters with specific strain characteristics [20]. K-means clustering is capable of identifying
emerging resistance clusters or outbreaks, facilitating timely interventions to curb the spread of antimicrobial-resistant
diseases. A study revealed that Salmonella enterica can demonstrate resistance to both metals and antibiotics [21].
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Fig. 1: ML methods and applications in the fight against antimicrobial resistance.
Deep learning algorithms, such as CNNs and RNNs [22], extract complex information from genomic sequences to

identify resistant strains and predict resistance mechanisms (Fig. 1). CNNs accurately classify bacterial strains as
resistant or susceptible based on genomic sequences, whereas RNNs predict antimicrobial susceptibility based on
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treatment history or microbial evolution over time. CNN models can discover functional genetic differences, provide
physiological explanations, and have clinical uses [22]. A CNN was used to predict Mycobacterium TB resistance to
13 medications by evaluating 18 previously unassociated genomic regions [23]. Deep learning techniques such as
generative adversarial networks (GANs) have shown encouraging outcomes in the analysis of antimicrobial peptides
[24]. GANSs can synthesize anti-bacterial peptides by modifying the probability distribution of generated sequences.
Tucs et al. [25] created six peptide variants, one of which demonstrated substantial antibacterial action against
Escherichia coli.

Reinforcement learning (RL) optimizes antibiotic treatment regimens and drug combinations against resistance through
trial-and-error feedback [26] (Fig. 1). RL techniques can maximize tasks with minimal understanding of system
dynamics, such as evolutionary simulations of bacterial populations. Using E. coli as a model, a study found that each
genotype in a population corresponded to a certain fitness landscape in simulations of evolution. The scientists found
that increased genome size did not limit the decline in population fitness caused by medication cycles [27]. The RL
method has been shown to provide reasonable antibiotic treatment recommendations for sepsis that align with clinical
experience [28].

ML approaches provide distinct advantages in combating AMR, including detecting genetic markers, forecasting
resistance trends, and optimizing treatment options in real-time. Methods for creating new antimicrobial drugs are
tailored to the specific problem and factors, leading to increased efficiency and precision [29, 30].

Al-powered AMP discovery

AMPs are small peptides that exhibit a wide range of structural diversity and possess antimicrobial properties. Amino
acid residues in their sequence can range from a few to dozens, with or without modifications, and they operate through
various mechanisms [31]. AMPs have the ability to destabilize membranes that are negatively charged and zwitterionic,
leading to the permeabilization of the membrane. This memorandum of agreement highlights antimicrobial peptides as
an innovative category of prospective antibacterial agents, complicating the emergence of resistance development [31,
32].

AMP extraction from existing sequence space

The advancement of novel antimicrobial peptides (AMPSs) has been greatly supported by Al. Platforms such as Deep-
AmPEP30, IAMPE, and DeepACP have significantly advanced the processes of peptide discovery and synthesis.
Databases of antimicrobial peptides derived from genetic sequences, like the AMPer database, are curated for the
purpose of designing innovative antimicrobial peptides. Advanced strategies for AMP design involve modifying
existing AMPs, creating protein epitope molecules (PEMs), and utilizing biophysically motivated modeling studies.
Natural Language Processing (NLP) has been utilized to comprehend AMP activity and to create AMPs. A study
integrating machine learning with extensive meta datasets, including omics data, demonstrated the potential of this
combination to enhance AMP prediction and pinpoint active therapeutic molecules. This study illustrates the significant
potential of employing computational techniques to identify active therapeutic molecules from various omics data
sources [33].

AMP harvesting from both extinct and simulated sequences

Microbes aren't the sole contributors to AMP mining. Maasch et al. [34] developed panCleave, a random forest model
designed to predict proteome-wide cleavage sites for the identification of AMPs in both extinct and extant human
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proteomes, utilizing the concept of “molecular de-extinction.” The AMPs identified through panCleave exhibited the
ability to permeabilize membranes and showed effectiveness against A. baumannii in murine skin abscess and thigh
infection models, highlighting the potential of the paleoproteome as a source for therapeutic candidates [34]. The
process of AMP mining from current proteomes, irrespective of their origin, is fundamentally biased towards the
sequence space of the proteome. Huang et al. [35] developed a sequential model ensemble pipeline that incorporates
machine learning modules, employing a coarse-to-fine design strategy to explore the complete virtual library of peptides
with lengths varying from six to nine amino acids. The tree lead hexapeptides from this pipeline exhibit considerable
efficacy against multidrug-resistant clinical isolates in both in vitro and in vivo models, highlighting the substantial
potential of the sequential model ensemble pipeline for objective peptide screening tasks [35].

Fig 2: The application of artificial intelligence in the synthesis of antimicrobial peptides. The databases of AMPs have
established a strong basis for training models using Al, including natural language processing and deep generative
networks. Al models can be employed to explore a vast array of protein sequence space, encompassing the extinct

human proteome, while high-throughput methods such as cell-free synthesis greatly enhance the speed of validating
potential antimicrobial peptides.

De novo design of AMP

Antimicrobial peptides (AMPs) have been developed using deep generative neural networks [36]. International Business
Machines Corporation employed two types of variational inference autoencoders, specifically the conventional
Variational Autoencoder (VAE) and the Wasserstein Autoencoder, to create two novel and highly effective AMPs. This
study addresses the peptide generation problem by conceptualizing it as a challenge in density modeling. The model
efficiently samples the peptide sequence space, highlighting regions with high probability density. The density
estimation technique has been improved to assign high likelihoods to identified trends while penalizing random,
insignificant sequences [37]. The team employed 1.7 million peptide sequences sourced from the UniProt database for
algorithm training. The frequency of interactions between positive residues and lipid bilayers is a predictor of
antimicrobial activity [130]. After comprehensive in silico screening, 20 peptide sequences were selected. The samples
were tested in wet laboratories to assess their antibacterial activity against different bacterial strains, including Gram-
positive S. aureus and Gram-negative E. coli. Within 48 days, two novel antimicrobial peptides demonstrating broad
antibacterial activity were identified [37]. Szymczak et al. [38] presented HydrAMP, a conditional VAE that
demonstrates proficiency in analog and unconstrained AMP synthesis, functioning as a deep generative model for AMP
design. The antimicrobial peptides exhibited effectiveness against five bacterial strains, including both Gram-positive
and Gram-negative types, as well as strains resistant to antibiotics. HydrAMP signifies a significant development in the
synthesis of high-potency antimicrobial peptides designed to combat antibiotic resistance [38].
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Deep generative neural networks applied to de novo AMP design produce a significant number of candidate peptides
for in vitro validation. DNA-based bioproduction significantly improves the efficiency of peptide screening compared
to conventional chemical synthesis techniques. However, methods that depend on cells encounter limitations due to the
toxic effects of peptides on bacteria [39]. Pandi et al. [39] utilized a cell-free protein synthesis pipeline to evaluate 500
de novo generated antimicrobial peptides using deep learning methodologies. Six of these AMPs demonstrated broad-
spectrum activity against multidrug-resistant bacterial isolates, underscoring the potential of DL-based design.

The role of Al in the advancement of phage therapy

Alternative techniques, such as phage therapy, have played a crucial role in addressing antibiotic resistance, in
conjunction with small-molecule medicines and AMPs [40, 41]. Bacteriophages, the natural predators of bacteria, have
co-evolved with their hosts for 3.8 billion years and are essential to the human microbiome [42]. Phage treatment offers
a higher level of specificity compared to broad-spectrum antibiotics, thereby minimizing disturbances to the microbiota
and helping to prevent the spread of antibiotic-induced antimicrobial resistance. A number of investigations have
demonstrated clinical success [45-48]. This section delineates phage therapy into four distinct steps: identifying phages,
predicting phage virion proteins (PVPs), analyzing phage lifestyle, and exploring phage-host interactions. The
discussion encompasses the application of artificial intelligence throughout each phase.

Conclusion

The One Health concept recognizes the interrelationship between human, animal, and environmental health, especially
regarding antimicrobial resistance (AMR). The application of antibiotics in humans, animals, and agricultural practices
can lead to the development and dissemination of resistant diseases. The use of antimicrobials in cattle for preventive
measures and growth promotion has sparked significant concerns regarding the potential for antibiotic resistance in
humans. This phenomenon can be attributed to the widespread occurrence of zoonotic diseases among animal
populations. Integrating Al and machine learning into One Health initiatives can facilitate data-driven collaboration
across various sectors, enabling efficient prediction, monitoring, and control of antimicrobial resistance threats.

The introduction of the exposome by Christopher Wild in 2005 is essential for comprehending the transmission of
AMR. This category encompasses all environmental exposures, such as the use of antibiotics in healthcare, agriculture,
and the broader environment. The analysis of exposome-related data through Al/ML techniques uncovers patterns that
connect environmental variables to antimicrobial resistance. These models leverage clinical records, environmental
monitoring, and genetic sequencing data to identify risk factors and forecast future trends in antimicrobial resistance.
The One Health paradigm enhances risk assessment and environmental management through the integration of big data
analysis, machine learning algorithms, and geographic information systems.

The integration of diverse data types, including genomic, phenotypic, clinical, and epidemiologic information, can
enhance predictive models for AMR through the application of Al and ML techniques. These tools facilitate early
detection of increasing resistance, allowing for timely intervention. The automation of the search for resistance
mechanisms and medicines through AI/ML streamlines the process, reducing the need for manual testing and decreasing
the likelihood of human error. Advanced algorithms and simulations enhance our capacity to combat AMR by
pinpointing novel pharmacological and therapeutic targets. Furthermore, the application of Al and machine learning
facilitates tailored antibiotic therapies by utilizing data from both patients and pathogens. The integration of various
fields, including computer science, biology, and medicine, is enhanced by these technologies, leading to innovative and
thorough approaches to addressing antibiotic resistance issues.
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